skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huber, Brian T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2026
  2. A long-term record of global mean surface temperature (GMST) provides critical insight into the dynamical limits of Earth’s climate and the complex feedbacks between temperature and the broader Earth system. Here, we present PhanDA, a reconstruction of GMST over the past 485 million years, generated by statistically integrating proxy data with climate model simulations. PhanDA exhibits a large range of GMST, spanning 11° to 36°C. Partitioning the reconstruction into climate states indicates that more time was spent in warmer rather than colder climates and reveals consistent latitudinal temperature gradients within each state. There is a strong correlation between atmospheric carbon dioxide (CO2) concentrations and GMST, identifying CO2as the dominant control on variations in Phanerozoic global climate and suggesting an apparent Earth system sensitivity of ~8°C. 
    more » « less
  3. null (Ed.)
    As the world warms, there is a profound need to improve projections of climate change. Although the latest Earth system models offer an unprecedented number of features, fundamental uncertainties continue to cloud our view of the future. Past climates provide the only opportunity to observe how the Earth system responds to high carbon dioxide, underlining a fundamental role for paleoclimatology in constraining future climate change. Here, we review the relevancy of paleoclimate information for climate prediction and discuss the prospects for emerging methodologies to further insights gained from past climates. Advances in proxy methods and interpretations pave the way for the use of past climates for model evaluation—a practice that we argue should be widely adopted. 
    more » « less